Space Weather Observations, Alerts, and Forecast

Current Space Weather Overview

Graphs Showing Solar X-Ray & Solar Proton Flux
Solar X-Ray & Solar Proton Flux.
Graph showing Planetary K-Index
Planetary K-Index.

3-day Solar-Geophysical Forecast

Product: 3-Day Forecast - Issued: 2024 Oct 18 0030 UTC
Prepared by the U.S. Dept. of Commerce, NOAA, Space Weather Prediction Center.

Geomagnetic Activity Observation and Forecast

The greatest observed 3 hr Kp over the past 24 hours was 3 (below NOAA Scale levels). The greatest expected 3 hr Kp for Oct 18-Oct 20 2024 is 4.00 (below NOAA Scale levels).

NOAA Kp index breakdown Oct 18-Oct 20 2024
Oct 18Oct 19Oct 20
00-03UT2.674.003.67
03-06UT3.003.673.33
06-09UT2.003.333.00
09-12UT2.002.673.00
12-15UT3.002.002.00
15-18UT3.332.002.00
18-21UT3.672.671.67
21-00UT4.003.001.67

Rationale: There is a chance of G1 (Minor storm) conditions on 18 Oct due to a potential glancing blow from an eruption on the western limb associated with the M2 flare from Region 3854 on 15 Oct at 1833 UTC.

Solar Radiation Activity Observation and Forecast

Solar radiation, as observed by NOAA GOES-18 over the past 24 hours, was below S-scale storm level thresholds.

Solar Radiation Storm Forecast for Oct 18-Oct 20 2024
Oct 18Oct 19Oct 20
S1 or greater10%10%10%

Rationale: The greater than 10 MeV proton flux is expected to remain at background levels with a slight chance for a solar radiation storm event through 20 Oct as Regions 3852 and 3854 transit the western limb.

Radio Blackout Activity and Forecast

Radio blackouts reaching the R1 levels were observed over the past 24 hours. The largest was at Oct 17 2024 0505 UTC.

Radio Blackout Forecast for Oct 18-Oct 20 2024
Oct 18Oct 19Oct 20
R1-R260%60%55%
R3 or greater10%10%10%

Rationale: Solar activity is expected to be at low levels, with moderate levels (R1-R2, Minor-Moderate) likely on 18-20 Oct. There is a slight chance for X-class flares (R3, Strong) through 20 Oct.


Real Time Images of the Sun


SOHO EIT 171
Click for time-lapse image of the sun
SOHO EIT 195
SOHO EIT 195 image of the sun
SOHO EIT 284
SOHO EIT 284 image of the sun
SOHO EIT 304
SOHO EIT 304 image of the sun
 
SDO/HMI Continuum
SDO/HMI Continuum Image of the Sun
SDO/HMI Magnetogram
Latest SDO/HMI Magnetogram image of the Sun
LASCO C2
Latest LASCO C2 image of the Sun
LASCO C3
Latest LASCO C3 image of the Sun

The sun is constantly monitored for sun spots and coronal mass ejections. EIT (Extreme ultraviolet Imaging Telescope) images the solar atmosphere at several wavelengths, and therefore, shows solar material at different temperatures. In the images taken at 304 Angstrom the bright material is at 60,000 to 80,000 degrees Kelvin. In those taken at 171 Angstrom, at 1 million degrees. 195 Angstrom images correspond to about 1.5 million Kelvin, 284 Angstrom to 2 million degrees. The hotter the temperature, the higher you look in the solar atmosphere.

Real Time Solar Wind


Real-Time Solar Wind
Graph showing Real-Time Solar Wind
Real-Time Solar Wind data broadcast from NASA's ACE satellite.

WSA-Enlil Solar Wind Prediction
Latest WSA-Enlil Solar Wind Prediction Model

WSA-Enlil is a large-scale, physics-based prediction model of the heliosphere, used by the Space Weather Forecast Office to provide 1-4 day advance warning of solar wind structures and Earth-directed coronal mass ejections (CMEs) that cause geomagnetic storms. Solar disturbances have long been known to disrupt communications, wreak havoc with geomagnetic systems, and to pose dangers for satellite operations.

Solar Cycle


Sun Spot Number Progression
Graph showing Sun Spot Number Progression
This plot shows the Solar Cycle Sun Spot Number Progression.
F10.7cm Radio Flux Progression
Graph showing F10.7cm Radio Flux Progression
This plot shows the F10.7cm Radio Flux Progression.

The Solar Cycle is observed by counting the frequency and placement of sunspots visible on the Sun. Solar minimum occurred in December, 2019, and the sun entered solar cycle 25 at that time.


Auroral Activity Extrapolated from NOAA POES


Northern Hemi Auroral Map
Current Northern hemispheric power input map
Southern Hemi Auroral Map
Current Southern hemispheric power input map

Instruments on board the NOAA Polar-orbiting Operational Environmental Satellite (POES) continually monitor the power flux carried by the protons and electrons that produce aurora in the atmosphere. SWPC has developed a technique that uses the power flux observations obtained during a single pass of the satellite over a polar region (which takes about 25 minutes) to estimate the total power deposited in an entire polar region by these auroral particles. The power input estimate is converted to an auroral activity index that ranges from 1 to 10.

Radio Communications Impact

D-Region Absorption

D-Region Absorption Prediction
Latest D-Region Absorption Prediction Model

The D-Region Absorption Product addresses the operational impact of the solar X-ray flux and SEP events on HF radio communication. Long-range communications using high frequency (HF) radio waves (3 - 30 MHz) depend on reflection of the signals in the ionosphere. Radio waves are typically reflected near the peak of the F2 layer (~300 km altitude), but along the path to the F2 peak and back the radio wave signal suffers attenuation due to absorption by the intervening ionosphere. The D-Region Absorption Prediction model is used as guidance to understand the HF radio degradation and blackouts this can cause.


VHF and HF Band Conditions





Credits:

Space Weather Images and Information (excluded from copyright) courtesy of:
NOAA / NWS Space Weather Prediction Center
Mauna Loa Solar Observatory (HAO/NCAR)
SOHO (ESA & NASA).

Space Weather links:
3-Day Forecast of Solar and Geophysical Activity
Space Weather Overview
LASCO Coronagraph
Real-Time Solar Wind
Space Weather Advisory Outlooks
Space Weather Forecast Disussions
Space Weather Alerts, Watches and Warnings
Solar and Heliospheric Observatory (SOHO)
The Very Latest SOHO Images

Powered by Space Weather PHP script by Mike Challis
additions by Martin of Hebrides Weather and Ken True of Saratoga Weather
with 3-day Solar-Geophysical Forecast text formatting by Jeremy Dyde of Jerbils Weather